Observe the following examples
                        
                        
                        
                        
                        
                        	
                            	- (3x +2) (4x +3) = 3x(4x + 3) + 2(4x +       3)
               
 =       12x2 + 9x + 8x + 6
 =       12x2 + 17x + 6
 The coefficient of x = 17 = 9 + 8
 9 *  8 = 72 = 12 * 6
             
                          - (2x + 3) (4x - 5) = 2x(4x - 5) + 3(4x       - 5)
               
 = 8x2 - 10x + 12x - 15
 =       8x2 + 2x - 15
 The coefficient of x = 2 = 12 - 10
 12 *-10       = -120 = 8?? - 15
These examples suggest the following method of factorization for a general quadratic expression.
                        
                        
                        Method of factorization of quadratic expressions
                        
                        	- Multiply the coefficient of x by the constant term.
- Resolve this product into two factors such that their sum is the coefficient of x.
- Rewrite the x term as the sum of two terms with these coefficients.
- Group them into two parts, each containing two terms, and factorize.
Example 1
                        
                        
                        
                        
                        x2  - 2x - 63
             
Here, the coefficient of x is 1 and the constant term is -63.
So, 1 *-63  = -63
Here,  -9 *  7 = -63
        -2x = -9x + 7x
x2 - 2x - 63 = x2 - 9x + 7x - 63
                   = x ( x - 9 ) + 7 ( x - 9 )
                   = ( x - 9 ) ( x + 7 )
                        
                        
                        
                        
                        
                        
                        Example 2
                        
                        
                        
                        Factorize  2x2 + 7x + 6
Here, 2 *  6 = 12
7 = 4 + 3; 4 *  3 = 12
Therefore, 2x2 + 7x + 6 = 2x2 + 4x + 3x + 6
                                    = 2x (x + 2) + 3 (x + 2)
                                    = (x + 2) (2x + 3)
                        
                        
                        
                        
                        Example 3
                        
                        
                        Factorize  3x2 - 11x + 6
3 *  6 = 18
-11x = -9x - 2x; -9 *  -2 = 18
3x2 - 11x + 6 = 3x2 - 9x - 2x + 6
                    =  3x ( x - 3 ) - 2 ( x - 3 )
                    =  ( x - 3 ) ( 3x - 2 )
                        
                        
                        
                        
                        
                       
                        
                     
                        Try these questions
I. Factorize the following
                            
                            	- 2x2      + 7x + 6
- 2x2      + x - 6
- 2x2 - x - 6
- 2x2      - 7x + 6
- 3x2      + 17x + 20
- 3x2      - 17x + 20
- 3x2      - 17x - 20
- 7x2      - 8x - 12
- 6x2      - 5x -14
- 3x2      - 16x + 16
- 6      - x - 2x2
- 6      + 7x - 3x2
- 12      - 4x - 5x2
- 16      + 8x - 3x2
- 3x2      + 8xy + 4y2
- 4x2      + 12xy + 5y2
- 4x4      - 5x2 + 1
- 9x4      - 40x2 + 16
- 4x2-      25x2 + 36
- 8x6- 65x3+ 8
Answers to Practice Problems
                            
                            	- 2x2      + 7x + 6 = 2x2 + 4x + 3x + 6
 = 2x ( x + 2 ) + 3( x + 2 )
 = ( x + 2 ) ( 2x + 3 )
                 
                                - 2x2      + x - 6 = 2x2 + 4x - 3x - 6
 = 2x ( x      + 2 ) - 3 ( x + 2 )
 = ( x + 2 ) ( 2x - 3      )
                 
                                - 2x2      - x - 6 = 2x2 - 4x + 3x - 6
 = 2x ( x - 2 ) + 3 ( x - 2 )
 =      ( x - 2 ) ( 2x + 3 )
                 
                                - 2x2      - 7x + 6 = 2x2 - 4x - 3x + 6
 = 2x ( x - 2 ) - 3 ( x - 2 )
 = ( x - 2 ) ( 2x - 3 )
                 
                                - 3x2      + 17x + 20 = 3x2 + 12x + 5x + 20
 = 3x ( x + 4 ) + 5 ( x + 4 )
 = ( x + 4 ) ( 3x + 5 )
                 
                                - 3x2      - 17x + 20 = 3x2 - 12x - 5x + 20
 = 3x ( x - 4 ) - 5 ( x - 4 )
 = ( x - 4 ) ( 3x - 5 )
                 
                                - 3x2 - 17x - 20 = 3x2 + 3x - 20x - 20
 = 3x ( x + 1 ) - 20 ( x + 1 )
 = ( x + 1 ) ( 3x - 20 )
                 
                                - 7x2      - 8x - 12 = 7x2 - 14x + 6x - 12
 = 7x ( x - 2 ) + 6 ( x -      2 )
 = ( x - 2 ) ( 7x + 6 )
                 
                                - 6x2      - 5x -14 = 6x2 - 12x + 7x - 14
 = 6x ( x - 2 ) + 7 ( x - 2 )
 = ( x - 2 ) ( 6x + 7 )
                 
                                - 3x2      - 16x + 16 = 3x2 - 12x - 4x + 16
 = 3x ( x - 4 ) - 4 ( x - 4 )
 = ( x - 4 ) ( 3x - 4 )
                 
                                - 6      - x - 2x2 = - ( 2x2 + x - 6)
 = - [ 2x2 + 4x - 3x - 6 ]
 = - [ 2x ( x + 2 ) - 3 ( x + 2 ) ]
 = - [ ( x + 2 ) ( 2x - 3 ) ]
 = ( x + 2 ) ( 3 - 2x )
                 
                                - 6+      7x - 3x2 = [ 3x2 - 7x - 6]
 = [ 3x2 - 9x + 2x - 6 ]
 = [ 3x - 9x + 2x - 6 ]
 = - [ ( x - 3 ) ( 3x + 2 ) ]
 = ( 3 - x ) ( 3x + 2 )
                 
                 
                                - 12      - 4x - 5x2 = - [ 5x2 + 4x - 12 ]
 = - [ 5x2 + 10x - 6x - 12 ]
 = - [ 5x ( x + 2 ) - 6 ( x + 2 ) ]
 = - [ ( x + 2 ) ( 5x - 6 ) ]
 = ( x + 2 ) ( 6 - 5x )
                 
                                - 16      + 8x - 3x2 = - [ 3x2 - 8x - 16 ]
 = - [ 3x2 - 12x + 4x - 16 ]
 = - [ 3x ( x - 4 ) + 4 ( x - 4 ) ]
 = - [ ( x - 4 ) ( 3x + 4 ) ]
 = ( 3x + 4 ) ( 4 - x )
                 
                                - 3x2      + 8xy + 4y2 = 3x2 + 6xy + 2xy + 4y2
 = 3x ( x + 2y ) +      2y ( x + 2y )
 = ( x + 2y ) ( 3x + 2y )
                 
                 
                                - 4x2      + 12xy + 5y2 = 4x2 + 2xy + 10xy + 5y2
 = 2x ( 2x + y ) +      5y ( 2x + y )
 = ( 2x + y ) ( 2x + 5y )
                 
                 
                                - 4x4      - 5x2 + 1 = 4x4- 4x2 - x2 + 1
 = 4x2 ( x2 - 1      ) - 1 ( x2 - 1 )
 = ( x2 - 1 ) ( 4x2 - 1 )
 = ( x + 1 ) ( x - 1 ) ( 2x + 1 ) ( 2x - 1 )
                 
                                - 9x4      - 40x2 + 16 = 9x4- 36x2 - 4x2 +      16
 = 9x2 ( x2      - 4 ) - 4 ( x2 - 4 )
 = ( x2 - 4 ) ( 9x2      - 4 )
 = ( x + 2 ) ( x - 2 ) ( 3x +      2 ) ( 3x - 2 )
                 
                                - 4x4-      25x2 + 36 = 4x4- 16x2 - 9x2 +      36
 = 4x2 ( x2      - 4 ) - 9 ( x2 - 4 )
 = ( x2 - 4 )      ( 4x2 - 9 )
 = ( x + 2 ) ( x - 2 ) (      2x + 3 ) ( 2x - 3 )
                 
                 
                                - 8x6-      65x3+ 8 = 8x6- 64x3- x3+ 8
 = 8x3( x3 - 8 )      - 1 ( x3 - 8 )
 = ( x3- 8 ) ( 8x3- 1 )
 = ( x - 2 ) ( x2 + 2x + 4 ) ( 2x      - 1 ) ( 4x2 + 2x + 1 )